PCLD-780 PCLD-880

Screw Terminal Board with Flat Cables

Wiring Terminal Board with Flat Cables and Adapter

Features

- Pin to pin design
- Low-cost universal screw-terminal boards for industrial applications
- 40 terminal points for two 20-pin flat cable connector ports
- Reserved space for signal-conditioning circuits such as low-pass filter, voltage attenuator and current-to-voltage conversion
- Table-top mounting using nylon standoffs. Screws and washers provided for panel or wall mounting

PCLD-780 Only

- · Screw-clamp terminal-blocks allow easy and reliable connections
- Dimensions: 102 x 114 mm (4.0" x 4.5")

PCLD-880 Only

- Supports PC-LabCard™ products with DB37 connectors
- Industrial-grade terminal blocks (barrier-strip) permit heavy-duty and reliable connections
- Dimensions: 221 x 115 mm (8.7" x 4.5")

Introduction

PCLD-780 and PCLD-880 universal screw-terminal boards provide convenient and reliable signal wiring for PC-LabCard[™] products with 20-pin flat-cable connectors. PCLD-880 is also equipped with a DB37 connector to support PC-LabCard[™] products with DB37 connectors.

PCLD-780 and PCLD-880 let you install passive components on the special PCB layout to construct your own signal-conditioning circuits. You can easily construct a low-pass filter, attenuator or current-to-voltage converter by adding resistors and capacitors onto the board's circuit pads.

Applications

- Field wiring for analog and digital I/O channels of PC-LabCard[™] products which employ the standard 20-pin flat cable connectors or DB37 connectors (only PCLD-880)
- Signal conditioning circuits can be implemented as illustrated in the following examples:
- a) Straight-through connection (factory setting) RAn = 0Ω jumper

RBn = none Cn = none

b) 1.6 kHz (3dB) low pass filter

 $RAn = 10 K\Omega$ RBn = none $Cn = 0.01 \mu F$ $f_{3dB} = \frac{1}{2\pi RAnCn}$

c) 10 : 1 voltage attenuator RAn = 9 K Ω RBn = 1 K Ω Cn = none Attenuation = $\frac{RBn}{RAn + RBn}$ (Assume source impedance << 10 K Ω)

d) 4 ~ 20 mA to 1 ~ 5 V_{DC} signal converter

RAn = 0 Ω (short) RBn = 250 Ω (0.1% precision resistor) Cn = none

Pin Assignments

Ordering Information

PCLD-780	Screw Terminal Board w/ Two 20-pin Flat Cables
PCLD-880	Wiring Board w/ Two 20-pin Flat Cables & Adapter
PCL-10137-1	DB37 Cable, 1 m
PCL-10137-2	DB37 Cable, 2 m
PCL-10137-3	DB37 Cable, 3 m
PCL-10120-1	20-pin Flat Cable, 1 m
PCL-10120-2	20-pin Flat Cable, 2 m